Brewing Liquor | From Water to Beer
When brewing beer, there are four basic ingredients that are essential: water, malt (or cereal grain), yeast and hops.
Modern conveniences have made obtaining these four ingredients wonderfully easy. All one has to do is go online and hundreds of types of malts and grains, hops, or yeast, can be purchased for small batches and large-scale brewing alike. How then, do brewers select the water that they will be using? Does it matter? Well, the average beer is conventionally understood to be composed of about 95 percent water. Such would include lighter styles, such as pale and amber lagers, German Kölsches, or the trendy session India pale ales (IPAs), which are notably low in alcohol by volume and body—the latter a catch-all term to informally refer to how a beverage feels in the mouth as it is being consumed. For a beer that may be considered light bodied, this 95 percent figure holds up well. Obviously, a beer that is 10 percent alcohol by volume cannot be more than 90 percent water, and more accurately would have to be a bit less than that in order to account for the substances within that make it, well, beer.
Hot water is run over the grain, in a process called sparging, to extract the sweet liquid, called wort, that will be fermented into beer. Photographs by Jesse Burke
Fundamentally, water is the main ingredient in beer, yet it is the easiest ingredient to overlook for its significance, utility, and overall effect on the finished beverage. Your average beer enthusiast or critic, when reviewing a beer, will likely omit any description of the water, known as brewing liquor, while sometimes yammering endlessly about the aromas of its hops or the depths and complexity of its malts. Water is tacitly assumed to rarely directly affect the taste of a good beer, so why bother discussing it in a review? In truth, the composition of the water used during brewing has a substantial and underappreciated effect on the finished brew.
A novice brewer will tend to stick to the basics, brewing styles of beer that do not require the water to be of a specific chemical composition. Homebrew kits that can be purchased from a local brewing supply shop often contain malt extracts that simplify the brewing process and allow for a more diverse range of water compositions. The downside is that a very simple beer will be the result, with
A.J. Delange Notes in Water:
A Comprehensive Guide for Brewers
If a brewer finds a particular malt to have too much
Water is quite different.
While the brewer cannot easily obtain water from a different source, what’s available can be modified. In fact, he must do exactly that if he wants to make excellent beers free from the limitations of the terroir school. (xix)
Brewing beer has come a long way in its over 5,000-year history. For a majority of that time, brewers were limited to the malts, hops, and water available in regions of relative proximity to where they brewed. Forget yeast—no one knew about that until Louis Pasteur discovered fermentation in 1857. Due to these geographic and economic restrictions, the water sources around a given brewery had a much more defining role on what qualities its beers would have, and which styles could be brewed. This has lead to some interesting historical styles, some of which require specific water compositions to brew, and even a few whose flavor is in part characterized by the type of water that is used.
It is important to emphasize that water that tastes good by itself is not necessarily appropriate for brewing beer. Throughout the brew, the water that is used will be undergoing chemical and mechanical changes. Water interacts and exchanges ions within the mash—the hot-water-saturated grain whose enzymes convert complex starches into more simple sugars, ideal for fermentation. Calcium, magnesium, and zinc are important nutrients for yeast, aiding its metabolism, and are important parts of a beer’s water profile. The final product is, in part, a result of these interactions, so water is selected or altered to suit the types of malts used and promote the health of the microorganisms (usually yeast, but several species of bacteria are also used in some styles of beer) that are metabolizing the sugars in the wort, which is the sugar-rich liquid derived from the mash that goes on to be fermented. Hops do not stand alone either; mineral composition in water will affect a number of their properties as well. Therefore, a beer of excellence will come about by catering the water to these needs, not to the ideal taste of water as consumed apart.
A wise first step to proper water usage during brewing is to acquire a water quality report from the municipality that is home to the brewery and its water source. These reports provide a rundown of the mineral content of the local water as it is being drawn from its source, and will indicate to the brewer what adjustments need to be made before the water can be utilized for the brew.
Water
For example, the city of Pilsen, from which the pilsner beer style originates, is famous for its soft water, meaning that it is lower in mineral content. Also low is the water’s alkalinity, as well as its
In sharp contrast, Burton-on-Trent, which celebrated a thousand years of brewing history in 2002, is famous for its very rich and extremely hard water. This is owed to high levels of calcium and magnesium sulfates, which come from the gypsum-rich geology below. Hard water is often desired in brewing, so much so that the term “Burtonization” was coined to refer to adding calcium sulfate to improve water’s suitability for brewing. Calcium and magnesium sulfates are among the most desirable minerals in brewing, providing essential nutrients for yeast, increasing hop utilization rate, and assisting in the removal of unwanted proteins from the grain. Burtonization is a common process in the making of the now popular and ubiquitous pale ale and IPA styles, which are brewed around the world from water sources quite divergent from those of Burton-on-Trent. With plenty of
If our next stop on our brewing liquor tour was Dublin, we have the ideal contrast to Pilsen water. Famous for Guinness, the world’s most widely known dry Irish stout, Dublin’s water is known for its high bicarbonate levels. The malts of a stout are more acidic, and the high bicarbonate levels lower the mash pH by acting as a buffer, preventing the natural acidity of the dark malts from becoming overbearing. Assuming the water used has not been adjusted artificially by the brewer, Pilsen water makes an undesirable stout, and
In modern times, traditional styles of beer such as those mentioned are brewed around the world, owing to water treatment methods that allow the mineral content of water to be altered to suit the needs of the style. If a water source requires additional minerals, the necessary additives can be dissolved into the brew easily enough, though this convenience is not necessarily a brewer’s panacea. Often the addition of one mineral necessitates that another be removed, so technologies such as reverse osmosis, which strips almost all ions from water, are employed to create a blank canvas from which to develop a brewing composition from scratch.
At Beer’d Brewing Company, located in Stonington, Connecticut, Aaren Simoncini, brewmaster
In the autumn, leaves falling and finding their way into the water are also a concern. As Simoncini says, “dead leaves or debris in the reservoir will change the output.” The influx of decaying vegetation typically increases the acidity of the water in the Aquarion reservoir, and therefore during this period more minerals that act as pH buffers, such as bicarbonates, are required to prevent the mash pH from dropping too low. Utility companies like Aquarion mainly concern themselves with the public safety of the water they manage, including microbial contamination and toxic compounds, such as lead or nitrates. The treatments they make to their water generally cover these necessities only, meaning it’s up to the savvy brewer to keep tabs on such seasonal fluctuations to ensure a stable product.
IPAs and double IPAs are the forte of Beer’d, with a majority of their nearly 60 beer recipes being innovative variations and explorations of the style. For each beer that is brewed, the water build is catered specifically to that recipe. As Simoncini explains, “Sometimes I want to accentuate some maltiness, sometimes I want to accentuate a bright, bitter beer. Or with hops, I really need to build up the
Luckily both for Simoncini and talented
For Heupel, the balance of ions in his IPAs is of equal concern, as he notes that “chloride generally accentuates
This look at the importance of water to the brewing of beer is truly only a taste. Many more minerals and ions can be found in water as it moves through the hydrologic cycle at various scales, from global processes to the specific localities known for unique water compositions. Many brewers today, especially those in the craft beer movement, are hybridizing existing beer styles, or creating unique brews whose styles are inchoate and yet to be officially defined. With such nuance brings water builds that are unique to the brewer instead of a particular region. Conceivable is the notion that in contemporary brewing, the water composition in a boundary-pushing ale or lager might not naturally exist anywhere on the planet. Furthermore, environmental changes, whether caused by human activity or otherwise, eventually alter the chemical composition of a water source over time. Such changes must be taken into account, or suddenly a subsequent batch of the same beer will not be consistent with prior times it was brewed.
As chemically complex as brewing liquor can seem, it is far outweighed by the innumerable organic and inorganic compounds from which grains, hops, and yeast
— Aaron McKee
Photographs by Jesse Burke
Contact Us
Telephone: (401) 874-6805
Email: allard@uri.edu
Contributor Guidelines
Please review submission guidelines to be considered. d